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Abstract. In this paper, we introduce a new class of equilibrium problems known as the
multivalued regularized equilibrium problems. We use the auxiliary principle technique to
suggest some iterative methods for solving multivalued regularized equilibrium problems.
The convergence of the proposed methods is studied under some mild conditions. As special
cases, we obtain a number of known and new results for solving various classes of regular-
ized equilibrium problems and related optimization problems.
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1. Introduction

Equilibrium problems theory is dynamic and is experiencing an explosive
growth in both theory and applications; as a consequence, research tech-
niques and problems are drawn from various fields. Equilibrium problems
have been generalized and extended in different directions. An important
and useful generalization of equilibrium problems is called the multivalued
general equilibrium problems, which was introduced and studied by Noor
[7]. It has been shown that a wide class of unrelated odd order and non-
symmetric free, moving, obstacle and equilibrium problems can be studied
via the multivalued equilibrium problems. Almost all the results obtained
for equilibrium problems are in the setting of convexity. In this paper, we
consider a new class of equilibrium problems, which are called multivalued
regularized equilibrium problems, where the convex set is replaced by the
so-called uniformly prox-regular sets. The uniformly prox-regular sets are
nonconvex and include the convex sets as a special case, see [2, 11]. As
special cases of these new problems, we can obtain the equilibrium prob-
lems discussed in [1, 7–9]. There are several numerical methods including
projection methods, Wiener-Hopf equations, descent and decomposition
for solving variational inequalities. Unfortunately these methods cannot be
extended for solving equilibrium problems. To overcome these difficulties,
we use the auxiliary principle technique, which is mainly due to Glowinski
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et al. [5]. Noor [7, 8] has used this technique to suggest and analyze sev-
eral numerical methods for solving various classes of equilibrium problems
and optimization problems. In this paper, we show that this technique can
be extended for multivalued regularized equilibrium problems. We use this
technique to suggest and analyze some iterative schemes for solving mul-
tivalued regularized general equilibrium problems and study their conver-
gence under mild conditions. As special cases, we obtain the corresponding
results for equilibrium problems and variational inequalities.

2. Preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted
by 〈·, ·〉 and ‖.‖, respectively. Let C(H) be the family of all nonempty com-
pact subsets of H. Let T : H −→ C(H) be a multivalued operator and g :
H −→H be a single-valued operator. Let K be a nonempty and closed set
in H . We need the following concepts from nonsmooth analysis, see [2, 11].

DEFINITION 2.1. The proximal normal cone of K at u is given by

NP (K;u) :={ξ ∈H :u∈PK [u+αξ ]},

where α >0 is a constant and

PK [u]={u∗ ∈K :dK(u)=‖u−u∗‖}.

Here dK(.) is the usual distance function to the subset K, that is

dK(u)= inf
v∈K

‖v −u‖.

The proximal normal cone NP (K;u) has the following characterization.

LEMMA 2.1. Let K be a closed subset in H. Then ζ ∈NP (K;u) if and only
if there exists a constant α >0 such that

〈ζ, v −u〉�α‖v −u‖2, ∀v ∈K.

DEFINITION 2.2. The Clarke normal cone, denoted by NC(K;u), is
defined as

NC(K;u)= co[NP (K;u)],

where co means the closure of the convex hull. Clearly NP (K;u) ⊂
NC(K;u), but the converse is not true. Note that NP (K;u) is always
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closed and convex, whereas NP (K;u) is convex, but may not be closed
[11]. Poliquin et al. [11] and Clarke et al. [2] have introduced and studied a
new class of nonconvex sets, which are called uniformly prox-regular sets.
This class of uniformly prox-regular sets has played an important part in
many nonconvex applications such as optimization, dynamic systems and
differential inclusions. In particular, we have.

DEFINITION 2.3. For a given r ∈ (0,∞], a subset K is said to be uni-
formly r-prox-regular if and only if every nonzero proximal normal to K

can be realized by an r-ball, that is, ∀u∈K and 0 
= ξ ∈NP (K;u),‖ξ‖=1,

one has

〈ξ, v −u〉� (1/2r)‖v −u‖2, ∀v ∈K.

It is clear that the class of uniformly prox-regular sets is sufficiently large
to include the class of convex sets, p-convex sets, C1,1 submanifolds (possi-
bly with boundary) of H, the images under a C1,1 diffeomorphism of con-
vex sets and many other nonconvex sets; see [2, 11]. Note that if r = ∞,

then uniform r-prox-regularity of K is equivalent to the convexity of K.

This fact plays an important part in this paper. It is known that if K is
a uniformly r-prox-regular set, then the proximal normal cone NP (K;u) is
closed as a set-valued mapping. Thus, we have NC(K;u) = NP (K;u) and
take γ = 1

2r
. Clearly γ =0, if and only if r =∞.

From now onward, the set K is a uniformly prox-regular set in H, unless
otherwise specified.

For a given single-valued function F(., .) :H ×H −→H, we consider the
problem of finding u∈H,g(u)∈K,ν ∈T (u) such that

F(ν, g(v))+γ ‖g(v)−g(u)‖2 �0, ∀v ∈H :g(v)∈K, (2.1)

which is called the uniformly regularized multivalued equilibrium problem.
If γ = 0, then the uniformly prox-regular set K becomes the convex set

K and problem (2.1) is equivalent to finding u∈H :g(u)∈K,ν ∈T (u) such
that

F(ν, g(v))�0, ∀v ∈H :g(v)∈K, (2.2)

which is called the multivalued general equilibrium problem introduced and
studied by Noor [7] using the auxiliary principle technique.

If F(ν, g(v))=〈ν, g(v)−g(u)〉, then problem (2.1) is equivalent to finding
u∈H,ν ∈T (u), g(u)∈K such that

〈ν, g(v)−g(u)〉+γ ‖g(v)−g(u)‖2 �0, ∀v ∈H :g(v)∈K, (2.3)
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which is known as the multivalued regularized general variational inequal-
ity. It is worth mentioning that a wide class of multivalued odd order and
nonsymmetric free, obstacle, moving, equilibrium and optimization prob-
lems arising in pure and applied sciences can be studied via the multivalued
general variational inequalities.

In brief, for suitable and appropriate choice of the operators T ,F (., .)

and the space H, one can obtain several new and known classes of equi-
librium problems and variational inequalities. For the applications and
numerical methods of variational inequalities and equilibrium problems, see
[1, 3–10, 12].

LEMMA 2.2. ∀u, v ∈H, we have

2〈u, v〉=‖u+v‖2 −‖u‖2 −‖v‖2. (2.4)

DEFINITION 2.4. ∀u1, u2, z ∈ H,w1 ∈ T (u1),w2 ∈ T (u2), the bifunction
F(., .) is said to be:

(i) partially relaxed strongly g-monotone, iff there exists a constant α >

0, such that

F(w1, g(u2))+F(w2, g(z))�α‖g(z)−g(u1)‖2.

(ii) g-monotone, iff

F(w1, g(u2))+F(w2, g(u1))�0.

(iii) g-pseudomonotone, iff

F(w1, g(u2))+γ ‖g(u2)−g(u1)‖2 �0,

implies

−F(w2, g(u1))+γ ‖g(u2)−g(u1)‖2 �0.

(iv) M-Lipschitz continuous, if and only if there exists a constant δ > 0,

such that

M(T (u1), T (u2))� δ‖u1 −u2‖,

where M(., .) is the Hausdorff metric on C(H).

We remark that, if z=u1, then partially relaxed strongly g-monotonicity
is exactly g-monotonicity of F(., .). For g ≡ I, the indentity operator, Defi-
nition 2.4 reduces to the definition of partially relaxed strongly monotonic-
ity, monotonicity and pseudomonotonicity of the bifunction F(., .).
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3. Main Results

In this section, we use the auxiliary principle technique to suggest and ana-
lyze some iterative schemes for solving uniformly regularized multivalued
variational inequalities.

For a given u∈H : g(u)∈K,ν ∈T (u), where K a uniformly prox-regular
set in H, consider the problem of finding w∈H :g(w)∈K,ξ ∈T (w) such that

F(ξ,g(v))+〈g(w)−g(u),g(v)−g(w)〉+γ ‖g(v)−g(w)‖2 �0, ∀g(v)∈K,

(3.1)

where ρ >0 is a constant.
Inequality of type (3.1) is called the auxiliary multivalued regularized

equilibrium problem. Note that if w=u, then w is a solution of (2.1). This
simple observation enables us to suggest the following iterative method for
solving (2.1).

ALGORITHM 3.1. For a given u0 ∈K, compute the approximate solution
un+1 by the iterative scheme

ρF(ηn+1, g(v))+〈g(un+1)−g(un), g(v)−g(un+1)〉
+γ ‖g(un+1)−g(un)‖2 �0, ∀g(v)∈K (3.2)

ηn ∈T (un) : ||ηn+1 −ηn||�M(T (un+1), T (un)), n=0,1,2, . . . (3.3)

Algorithm 3.1 is called the proximal point algorithm for solving uniformly
regularized equilibrium problem (2.1). For suitable and appropriate choice
of the operators and the spaces, one can obtain a number of new and
known iterative methods for solving the equilibrium problems and varia-
tional inequalities.

We now consider the convergence analysis of Algorithm 3.1.

THEOREM 3.1. Let u∈H be a solution of (3.1) and un+1 be the approximate
solution obtained from Algorithm 3.1. If F(., .) is a g-pseudomonotone, then

{1−γ }‖g(un+1)−g(u)‖2 �‖g(un)−g(u)‖2

−{1−γ }‖g(un+1)−g(un)‖2. (3.4)

Proof. Let u∈H,g(u)∈K,ν ∈T (u) be a solution of (2.1). Then

F(ν, g(v))+γ ‖g(v)−g(u)‖2 �0, ∀g(v)∈K. (3.5)

Now taking v =un+1 in (3.5), we have

F(ν, g(un+1))+γ ‖g(un+1))−g(u)‖2 �0,



488 M.A. NOOR

which implies that

−F(ηn+1, g(u))+γ ‖g(un+1)−g(u)‖2 �0, (3.6)

since F(., .) is a g-pseudomonotone operator.
Taking v =u in (3.2), we get

ρF(ηn+1, g(u))+〈g(un+1)−g(un), g(u)−g(un+1)〉+γ ‖g(u)−g(un+1)‖2�0.

which can be written as

〈g(un+1)−g(un), g(u)−g(un+1)〉
�−ρF(ηn+1, g(u))−γ ‖g(u)−g(un+1)‖2

�−γ ‖g(u)−g(un+1)‖2 −γ ‖g(un+1)−g(u)‖2, (3.7)

where we have used (3.6).
Setting u=g(u)−g(un+1) and v =g(un+1)−g(un) in (2.4), we obtain

2〈g(un+1)−g(un), g(u)−g(un+1)〉=‖g(u)−g(un)‖2 −‖g(u)−g(un+1)‖2

−‖g(un+1)−g(un)‖2. (3.8)

Combining (3.7) and (3.8), we have

{1−γ }‖g(un+1)−g(u)‖2 �‖g(un)−g(u)‖2 −{1−γ }‖g(un+1)−g(un)‖2,

the required result (3.4).

THEOREM 3.2. Let H be a finite dimensional space and let g :H −→H be
injective. Let T : H −→ C(H) be M-Lipschitz continuous operator. If γ � 1,

then the sequence {un}∞
1

given by Algorithm 3.1 converges to a solution u of
(2.1).

Proof. Let u ∈ H be a solution of (2.1). From (3.4), it follows that
the sequence {||g(u) − g(un)||} is nonincreasing and consequently {g(un)}
is bounded. Thus it follows that the sequence {u} is bounded under the
assumptions of g. Furthermore, we have

∞∑

n=0

{1−γ }||g(un+1)−g(un)||2 � ||g(u0)−g(u)||2,

which implies that

lim
n→∞ ||g(un+1)−g(un)||=0. (3.9)
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Let û be the limlit point of {un}∞
1

; a subsequence {unj
}∞

1
of {un}∞

1
con-

verges to û ∈ H . Replacing wn by unj
in (3.2), taking the limit nj −→ ∞

and using (3.9), we have

F(ν̂, g(v))+γ ‖g(v)−g(û)‖�0, ∀g(v)∈K,

which implies that û solves the multivalued regularized equilibrium prob-
lem (2.1) and

‖g(un+1)−g(u)‖2 �‖g(un)−g(u)‖2.

Thus, it follows from the above inequality that {un}∞
1

has exactly one
limit point û and

lim
n→∞ g(un)=g(û).

Since g is injective, thus

lim
n→∞(un)= û.

It remains to show that ν ∈T (u). Using the M-Lipschitz continuity of T ,
we have

||νn −ν||�M(T (un), T (u))� δ||un −u||,
which implies that νn −→ν as n−→∞. Now consider

d(ν, T (u))� ||ν −νn||+d(ν, T (u))

� ||ν −νn||+M(T (un), T (u))

� ||ν −νn||+ δ||un −u||−→0, n−→∞,

where d(ν, T (u))= inf{||ν − z|| : z∈T (u)} and δ > 0 is the M-Lipschitz con-
tinuity constant. From the above inequality, it follows that d(ν, T (u)) = 0.

This implies that ν ∈T (u), since T (u)∈C(H). This completes the proof.

It is well-known that to implement the proximal point methods, one has
to calculate the approximate solution implicitly, which is in itself a difficult
problem. To overcome this drawback, we suggest another iterative method,
the convergence of which requires only the partially relaxed strongly mono-
tonicity, which is a weaker condition that cocoercivity.

For a given u∈H :g(u)∈K,ν ∈T (u) consider the problem of finding w∈
H :g(w)∈K such that

ρF(ν, g(v))+〈g(w)−g(u), g(v)−g(w)〉+γ ‖g(v)−g(w)‖2�0, ∀g(v)∈K,

(3.10)



490 M.A. NOOR

which is also called the auxiliary uniformly regularized equilibrium prob-
lem. Note that problems (3.1) and (3.10) are quite different. If w=u, then
clearly w is a solution of (2.1). This fact enables us to suggest and analyze
the following iterative method for solving (2.1).

ALGORITHM 3.2. For a given u0 ∈K, compute the approximate solution
un+1 by the iterative scheme

ρF(νn, g(v))+〈g(un+1)−g(un), g(v)−g(un+1)〉
+γ ‖g(v)−g(un+1)‖2 �0, ∀g(v)∈K (3.11)

ηn ∈T (un) : ||ηn+1 −ηn||�M(T (un+1), T (un)). (3.12)

For suitable and appropriate choice of the operators and the spaces, one
can obtain a number of iterative methods for solving equilibrium problems
and variational inequalities.

We now study the convergence of Algorithm 3.2. The analysis is in the
spirit of Theorem 3.1.

THEOREM 3.3. Let the bifunction F(., .) be partially relaxed strongly
g-monotone with constant α>0. If un+1 is the approximate solution obtained
from Algorithm 3.2 and u∈H is a solution of (2.1), then

{1−γ }‖g(u)−g(un+1)‖2 �‖g(u)−g(un)‖2

−{1−2ρα −γ }‖g(un)−g(un+1)‖2. (3.13)

Proof. Let u∈H be a solution of (2.1). Then

F(ν, g(v))+γ ‖g(v)−g(u)‖2 �0, ∀g(v)∈K. (3.14)

Taking v =un+1 in (3.14), we have

F(ν, g(un+1))+γ ‖g(un+1)−g(u)‖2 �0. (3.15)

Letting v =u in (3.11), we obtain

ρF(νn, g(u))+〈g(un+1)−g(un), g(u)−g(un+1)〉+γ ‖g(u)−g(un+1)‖2�0,

which implies that
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〈g(un+1)−g(un), g(u)−g(un+1)〉
�−ρF(νn, g(u))−γ ‖g(u)−g(un+1)‖2

�ρ{F(νn, g(u))+F(ν, g(un+1))}−γ ‖g(u)−g(un+1)‖2

−γ ‖g(un)−g(un+1)‖2

�−αρ‖g(un)−g(un+1)‖2 −γ ‖g(u)−g(un+1)‖2

−γ ‖g(un)−g(un+1)‖2. (3.16)

since F(., .) is partially relaxed strongly g-monotone with constant α >0.

Combining (3.8) and (3.16), we obtain the required result (3.13).

Using essentially the technique of Theorem 3.2, one can study the con-
vergence analysis of Algorithm 3.2.

REMARK 3.1. In this paper, we have studied a new class of equilibrium
problems known as the multivalued regularized equilibrium problems. We
have shown that the auxiliary principle technique can be extended for solv-
ing multivalued regularized equilibrium problems with suitable modifica-
tions. We note that this technique is independent of the projection of the
operator. Using essentially the technique of this paper, one can suggest and
analyze a number of iterative methods for solving mixed multivalued mixed
quasi regularized general equilibrium problems.
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